A Scalable Global Optimization Algorithm for Stochastic Nonlinear Programs
نویسندگان
چکیده
We propose a global optimization algorithm for stochastic nonlinear programs that uses a specialized spatial branch and bound (BB) strategy to exploit the nearly decomposable structure of the problem. In particular, at each node in the BB scheme, a lower bound is constructed by relaxing the so-called non-anticipativity constraints and an upper bound is constructed by fixing the first-stage variables to the current candidate solution. A key advantage of this approach is that both lower and upper bounds can be computed by solving individual scenario subproblems. Another key property of this approach is that we only need to perform branching on the first-stage variables to guarantee convergence (branching on the second-stage variables is performed implicitly during the computation of lower and upper bounds). The algorithm is implemented in SNGO in Julia and is interfaced to the modeling languages JuMP and Plasmo. Our implementation contains typical algorithmic features of global optimization solvers such as convexification, outer approximation, feasibility-based bound tightening, optimality-based bound tightening, and local search. Numerical experiments are performed using a stochastic optimization formulation for controller tuning, a parameter estimation formulation for microbial growth models, and a stochastic test set from GLOBALlib. We compare the computational results against SCIP and demonstrate that the new approach achieves significant speedups.
منابع مشابه
A Solution Approach for Two-Stage Stochastic Nonlinear Mixed Integer Programs
This paper addresses the class of nonlinear mixed integer stochastic programming problems. In particular, we consider two-stage problems with nonlinearities both in the objective function and constraints, pure integer first stage and mixed integer second stage variables. We exploit the specific problem structure to develop a global optimization algorithm. The basic idea is to decompose the orig...
متن کاملElite Opposition-based Artificial Bee Colony Algorithm for Global Optimization
Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملMulti-objective and Scalable Heuristic Algorithm for Workflow Task Scheduling in Utility Grids
To use services transparently in a distributed environment, the Utility Grids develop a cyber-infrastructure. The parameters of the Quality of Service such as the allocation-cost and makespan have to be dealt with in order to schedule workflow application tasks in the Utility Grids. Optimization of both target parameters above is a challenge in a distributed environment and may conflict one an...
متن کاملUsing a new modified harmony search algorithm to solve multi-objective reactive power dispatch in deterministic and stochastic models
The optimal reactive power dispatch (ORPD) is a very important problem aspect of power system planning and is a highly nonlinear, non-convex optimization problem because consist of both continuous and discrete control variables. Since the power system has inherent uncertainty, hereby, this paper presents both of the deterministic and stochastic models for ORPD problem in multi objective and sin...
متن کامل